Например, Бобцов

Прогнозирование летального исхода у пациентов с установленным диагнозом
COVID-19

Аннотация:

Предмет исследования. Появление нового коронавируса SARS-CoV-2 является основой развития пандемии COVID-19. Пандемия привела к резкому росту нагрузки на системы здравоохранения высокой летальности и существенным трудностям в организации медицинской помощи. Для прогнозирования течения заболевания и определения показания к более агрессивному лечению предложено множество различных клинических и биологических маркеров. Однако не всегда клинико-лабораторная оценка состояния точно предсказывает развитие тяжелого течения болезни. В этом случае технологии, основанные на искусственном интеллекте, могут существенно влиять на оценку прогнозирования. Выполнен системный анализ факторов, влияющих на течение инфекционного заболевания у пациентов с диагностированным COVID-19, госпитализированных в стационар. Метод. Предложенный подход основан на применении машинного обучения для прогнозирования летального исхода у пациентов с установленным диагнозом COVID-19. В основе подхода лежит анамнез пациента и клинические, лабораторные и инструментальные данные, полученные в первые 72 часа нахождения пациента в стационаре. Основные результаты. Алгоритм машинного обучения для прогнозирования летального исхода у пациентов с COVID-19 в течение 72 часов госпитализации продемонстрировал высокую чувствительность (0,816) и специфичность (0,865). Практическая значимость. Созданный алгоритм может помочь улучшить оказание медицинской помощи пациентам, снизить смертность и свести к минимуму нагрузку на врачей во время пандемии COVID-19. При ограничении ресурсов в период пандемии, включая аппараты искусственной вентиляции легких, точное прогнозирование состояния пациентов с тяжелым течением и возможным летальным исходом может дать важные рекомендации для разделения групп пациентов и рационального распределении лечебных ресурсов.

Ключевые слова:

Статьи в номере